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Abstract

The Federal Aviation Administration and the avi-
ation community within the U.S. have recently
adopted new operational procedures and deci-
sion support tools for implementing and manag-
ing Ground Delay Programs (GDPs) based on
the Collaborative Decision Making paradigm. In
this paper, we investigate the impact these proce-
dures have had on aircraft arrival time uncertainty
during GDPs and, more generally, on the conse-
quences of arrival demand uncertainty for GDP
performance. Our analysis employs two mod-
els: a stochastic integer program and a simula-
tion model; results are augmented with historical
analysis. The integer program is interesting in
its own right in because of an embedded binomial
probability distribution. Owur analysis produces
three results. First, we compare the relative sig-
nificance of some of the most prevalent sources
of demand uncertainty. Second, we indicate how
changes in the current practice for setting airport
arrival rates can lead to significant benefits. Fi-
nally, we discuss how the combination of timely
cancellation notices and the use of the Compres-
sion algorithm (an inter-airline slot exchange pro-
cedure that attempts to maximize utilization in
the presence of delays and cancellations) may af-
fect the uncertainty of flight arrival times during
ground delay programs.

Introduction

The Federal Aviation Administration (FAA) and
the aviation community within the U.S. have
recently adopted Collaborative Decision Making
(CDM) as a new approach toward air traffic flow
management. CDM is based on the recognition
that improved data exchange and communication
between the FAA and the airlines will lead to bet-
ter decision making. In particular, the CDM phi-
losophy emphasizes that decisions with a potential
economic impact on airlines should be decentral-
ized and made in collaboration with the airlines
whenever possible (see [5] and [8]).

While the CDM paradigm applies to a wide
range of applications in Air Traffic Flow Man-
agement, its initial implementation has focused
on the development of new operational proce-
dures and decision support tools for implementing
and managing Ground Delay Programs (GDPs).
A GDP is a control action taken by the FAA
to reduce arrival flow into an airport suffering
from degraded arrival capacity or excess demand.
Typically, capacity reductions are caused by bad
weather. In a GDP, flights bound for congested
airports are delayed on the ground so the arrival
demand will match the arrival capacity. The nu-
merous GDP enhancements implemented under
CDM include improved data-exchange, better sit-
uational awareness tools, and increased flexibility
for the airlines. The most significant enhance-
ments, however, have been changes to resource



allocation procedures. Under CDM, arrival capac-
ity is allocated to the airlines by a procedure called
Ration-by-Schedule (RBS). RBS is based on the
consensus recognition that airlines have claims on
the arrival schedule based on the original flight
schedules, and has removed disincentives airlines
previously had for providing accurate information.
In addition, CDM has introduced a new procedure
for inter-airline slot exchange called Compression.
This procedure aims to optimize arrival capacity
usage in the presence of delays and cancellation, in
a fair and equitable manner. The effects of these
procedures has been significant: since initial im-
plementation of GDP prototype enhancements in
January of 1998, over six million minutes of as-
signed ground delay have been avoided (see [1],
2)).

In this paper, we take a closer look at the im-
pact of these procedures, with a focus on their ef-
fects on demand uncertainty (e.g. the uncertainty
of flight arrival times during GDPs) and, more
generally, on the consequences of demand uncer-
tainty for GDP performance. First, we present a
simulation model to analyze how uncertainty re-
duction can lead to smaller airborne arrival queues
needed to maintain high levels of airport utiliza-
tion. We also use this model to highlight the
relative significance of some of the most preva-
lent sources of demand uncertainty. Second, we
present a stochastic integer programming model
to determine optimal arrival rates in the presence
of demand uncertainty. Computational results
obtained with this model indicate that changes
in the current practice for setting arrival rates
might have significant benefits. Finally, we discuss
how the combination of timely cancellation no-
tices and the use of the compression algorithm has
reduced the uncertainty of flight arrival times dur-
ing ground delay programs, and we use our models
to quantify the resulting benefits. To the best of
our knowledge, our study is the first to analyze
the effects of demand uncertainty on GDP perfor-
mance: prior studies concentrated on stochastic
capacity as the source of uncertainty (e.g., see [6],

[4])-

Model Description

The implementation of GDPs consists of the as-
signment of ground delays to individual flights in
accordance with a temporarily reduced airport ar-
rival capacity (airport acceptance rate — AAR).
The process can be viewed as one of assigning
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Figure 1: Queueing model representation of flight
arrivals

landing time slots to flights. Once a flight receives
its arrival time slot, a corresponding ground delay
can be assigned. Each GDP produces a planned
arrival sequence, which states for each flight the
time it is supposed to arrive at the airport. The
actual arrival sequence, however, may differ sub-
stantially: flights can experience delays or be can-
celled, while other flights can arrive unexpectedly.
Such perturbations of the arrival sequence intro-
duce an element of unpredictability for the FAA’s
traffic flow specialists, which may result in air-
borne holding delays or airport under-utilization.
This is perhaps clearer if we view the arrival of
flights during a GDP as a single-server queueing
system, as shown in Figure 1. Note that there are
three key measures of performance: ground de-
lay, airborne delay and airport throughput. The
traffic flow specialists have direct control over the
ground delay assigned. However, the resulting air-
borne delay and throughput depend on the as-
signed ground delay together with a variety of
stochastic elements including those that perturb
demand and those that perturb capacity. The ef-
fective planning and control of a GDP involves
delicately balancing these three performance mea-
sures. An aggressive policy would assign relatively
small amounts of ground delay, which would in-
sure close to maximum throughput at the expense
of large airborne delay. A conservative policy
would assign a relatively large amount of ground
delay, which would result in little or no airborne
delay and possible underutilization of airport ca-
pacity.

In the models in this paper, we evaluate the
performance of a GDP according to the three
measures: ground delay, airborne delay, and uti-



lization. Here utilization equals (actual arrival
rate)/(arrival capacity). We note that in prac-
tice, utilization is not precisely defined; airport
capacity depends on a variety of subtle factors,
such as aircraft arrival mix and the current rate
of departures.

Model Assumptions

To model a GDP as a single-server queueing sys-
tem, we assume that both the number of time
periods T and the start time S of the GDP
are known, and that the airport acceptance rate
(AAR) is deterministic and constant in all peri-
ods. While these assumptions are a simplification
we feel our model accurately represents the essen-
tial GDP tradeoffs. Furthermore, we assume there
are n flights, fo,..., f, controlled by the GDP,
and that each flight f; has an en-route time ete;,
and an airline-scheduled arrival time oag;, usually
taken from the Official Airline Guide (OAG). For
purposes of our analysis, we consider the number
of flights vying for resources to be sufficiently large
to warrant a GDP.

Under this representation, a GDP is completely
specified by the following three parameters:

. . o 1 .
1. the service time s = 77

2. the inter-arrival time a (the time between
consecutive flight arrivals);

s I

Once the air traffic specialist has determined ap-
propriate parameters, each flight is assigned an
arrival slot (i.e. flight f; is assigned slot ). Flight
fi is scheduled to arrive at time t; = S + ia. This
fixes flight f;’s total planned delay, and there-
fore its ground delay, at S + ia — oag; (we note
that sometimes the ground delay assigned is ad-
justed depending on factors such as changes to
flight plan, conditions at the origin airport, etc.).
The actual arrival time, of course, is in general
different from the scheduled arrival time. It can
be represented as t; = S + ia 4+ w;, where w; is a
random variable that can be positive or negative.

As the service time is determined by the actual
airport capacity AAR, the implementation of a
GDP requires the following two decisions: the ap-
propriate inter-arrival time a, and the flight se-
quence fy,..., fn. Flight sequence decisions af-
fect only the distribution of delay among flights,
and are based on equity principles embedded in
the Ration-By-Schedule algorithm (see [7] for an
overview). The distribution of delays is beyond

3. the flight sequence fi, ...

the scope of this paper, and we shall assume a
predetermined flight sequence. Instead, we con-
centrate on the effect of the inter-arrival times on
overall delay changes in the presence of demand
uncertainty. Inter-arrival times are determined by
the planned airport acceptance rate PAAR, that
is, a = #AR.

We emphasize the distinction between airport
acceptance rates (AARs) and planned acceptance
rates (PAARs). An AAR reflects arrival capac-
ity; it is the number of arrivals per unit time that
can be acommodated by the airport, given phys-
ical constraints such as weather, runway configu-
ration, and the number of departures. A PAAR
reflects a control decision on the part of the FAA;
it is the number of arrival slots per unit time al-
located by the traffic flow specialist. The PAAR
may be set higher than the AAR to allow for fu-
ture cancellations, or set lower than the AAR to
accommodate demand not known at the time of
GDP planning. Both AARs and PAARs may fluc-
tuate over the life of a GDP.

Sources of Demand Uncertainty

Deviations from planned arrival times may create
demand uncertainty in the form of inter-arrival
time variation. This may occur when the devia-
tions are unknown at the time the GDP is planned
or, more generally, whenever a flight’s updated
information cannot be used anymore for a pos-
sible mitigating response [Tom: I don’t follow
this last comment|. Historic analyses of GDPs
indicate that the primary sources of demand un-
certainty are flight cancellations, unexpected ar-
rivals (“pop-ups”), and aircraft arrival time drift
(see [3]).

Cancellations Cancellations cause unexpected
gaps in the arrival sequence when they are
not anticipated at the time the GDP was im-
plemented. Typically, this occurs when an
air carrier fails to notify the FAA of a flight
cancellation, but other reasons (e.g. mechan-
ical and upstream delays, flight diversions)
are also possible.

In our models, each flight will be canceled
(not show up) with a probability pe,.. If can-
cellation were the sole source of uncertainty,
the inter-arrival times would follow a geomet-
ric distribution with mean 2/(1 — pep,) and
standard deviation 2p.nz/(1 — penz)?.

Pop-ups Pop-ups are flights that arrive at the
airport but were not expected at the time the



GDP was implemented. Pop-ups are usually
general aviation aircraft, military aircraft, or
last-minute flights created by scheduled car-
riers.

In our analysis, we assume that the stream
of pop-ups follows a Poisson process, that is,
their inter-arrival times are exponentially dis-
tributed with mean \.

Drift Aircraft drift represents the situation in

which a flight deviates from its assigned ar-
rival time. The primary causes for this are
en-route congestion and late departure from
their origin airports. Although flights can
arrive early, they tend to arrive later than
their assigned arrival time. Significant drift
is commonly caused by en-route congestion
or departure delays (e.g. taxi-out and gate
delays).
In our analysis, we represent drift by a
uniformly distributed displacement. More
specifically, flight f; will arrive at the airport
at time t; = S+ia+wu;, with u; = U(=5, 15).
The parameters -5 and +15 have been set
to correspond to the FAA’s current policy of
controlled departure time adherence: no ear-
lier than five minutes prior to the controlled
departure time and no later than fifteen min-
utes after the controlled departure time.

While we believe these distributions provide a
reasonable approximation of the uncertainty dur-
ing GDPs, further empirical studies are neces-
sary (and currently underway) to determine more
precise models. We remark that the parameters
used in the empirical studies that follow are based
on initial analyses of the frequency of cancella-
tions and pop-ups, and of the ranges of drift (e.g.,
see [3]).

Effects of Demand Uncertainty

To analyze the effects of uncertainty in the arrival
stream, we performed a simulation study of the
single-server queueing model and the influence of
the inter-arrival time decisions by ATCSCC. In
all cases, we used an arrival rate AAR = 30 and
T = 4 periods. All simulation averages were based
on 1000 replications.

As a first step, we studied the effect of increas-
ing PAARs on GDP performance (airborne hold-
ing and ground holding) by running the simulation
model with a cancellation probability pep, = 0.15
as the single source of uncertainty. The results are
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Figure 2: Impact of increasing PAAR.

shown in Figure 2. In Figure 2(a), the solid lines
represent the average ground delay, the dashed
lines represent the average airborne delay, and the
dotted lines represent average overall delay. Fig-
ure 2(b) shows the utilization. As expected, in the
presence of unexpected cancellations, it is possible
to reduce overall delay by raising the PAAR (send-
ing more aircraft). The price paid, however, is an
in increase in airborne holding. Note that this is
true even if we raise the PAAR above the expected
number of arrivals in each period. This effect ta-
pers off once the airport is close to fully utilized;
further PAAR increases simply convert ground
holding into airborne holding. Next, we stud-
ied the “marginal” effects of the various sources
of uncertainty, that is, the effect each source has
on GDP performance in the presence of the other
uncertainty sources. The graphs in Figure 3 illus-
trate the variation in airborne delay as a function
of the levels of different sources of demand uncer-



tainty. In each graph, the vertical axis measures
airborne delay in average minutes per flight, while
the horizontal axis measures cancellation proba-
bility, pop-up interarrival rate, and drift, respec-
tively. Each curve on a graph represents a differ-
ent level of airport utilization.
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Figure 3: Marginal effects of uncertainty sources.

The results show that of the three uncertainty
sources, drift has the greatest impact on airborne
queue size. This highlights the importance of re-
cent efforts by the FAA to reduce drift by re-
moving en-route restrictions imposed on aircraft
bound for a GDP airport and by tightening the
window in which controlled flights can depart.

Optimal Planned Acceptance
Rates

The planned airport acceptance rate is a nominal
figure used by the FAA in resource allocation to
realize an actual acceptance rate they have set as a
goal. Higher planned rates lower the total amount
of FAA-assigned ground delay, but risk incurring
larger amounts of airborne holding (if more flights
approach the airport than can be accommodated).
Lower planned rates increase total ground delay at
the risk of airport under-utilization. The simula-
tion study takes these decisions as an input, and
furthermore assumed that the planned rates were
constant for the duration of the program. We de-
veloped a stochastic integer program to determine
an “optimal” planned rate for each period of the
GDP in the presence of demand uncertainty. By
optimal, we mean rates that minimize the over-
all amount of airborne holding, given a constraint
on the capacity utilization. Essentially, the GDP
is modelled as a Markov-decision process. Under
this approach, it is difficult to take into account
the effects of drift. We have not yet found an effi-
cient way to incorporate this source of uncertainty
into the model.

Integer Programming Model

The formulation of an integer programming model
for determining optimal planned acceptance rates
proceeds in two steps. First, we develop a general
formulation with non-linear constraints, which
may be difficult to solve. We then derive a sec-
ond model in which the original constraints are
linearized.

In the first formulation, we have the following
decision variables.

o z,, € {0,1}; z, = 1 if the acceptance rate
during period t equals a, and 0 otherwise.

e g+ > 0; g;; represents the probability that
there are j flights in the queue at the start of
period t.

The model constraints are as follows.

e In each period, exactly one planned accep-
tance rate is selected, that is,

Zxa’tzl, foralltel,...,T. (1)



e The queue probabilities during each period
sum to one, e.g.,

> gu=1, foralltel,... . T+1. (2)
J

In addition, we have qo,; = 1, that is, the
airborne queue is empty initially.

e Transition probabilities are defined as fol-
lows.

qjt+1 = Zpi,j\aqi,txa,tvfor jat € 17 s 7T'

a,i

3)
Di,jla Tepresents the probability that that
there will be j flights in the queue at the end
of a period, given that there are i flights in
the queue at the start of the period and the
acceptance rate equals a. Given the cancel-
lation and/or pop-up probabilities, these co-
efficients are easily calculated.

e The utilization required may be expressed as
Z €iaQitTar <€ fortel,....,T. (4)

a,i

€;,q represents the expected number of unuti-
lized slots during period ¢, given that there
are i flights in the queue at the start of the pe-
riod and the acceptance rate equals a. Again,
these coefficients are readily determined. €
represents the maximum number of unuti-
lized slots allowed in each period.

Finally, the objective function is defined as
min» g,
Jrt

that is, we wish to minimize the expected amount
of airborne delay.

Constraints (3) and (4) contain non-linear
terms. To linearize these terms, we introduce a
new set of variables:

()

® djta = 0; §j¢a represents the probability
that there are j flights in the queue at the
start of period t if the planned acceptance
rate during that period is a, and equals 0 oth-
erwise.

Using these variables, constraint set (2) can be
expressed as

ZQAN’“ =14, forallae,tel,...,T+1.
J

Constraint (3) can be replaced by the following
pair of constraints

E Gjt+1,a0 — E Dijladita <1 — T,
a’ i

E djt+1,a0 — E Dijladita = 1 — Tat,
a’ L

3

forall a,j,te1,...,T.
Similarly, the utilization requirement (4) will be
replaced by

Z ei,adi,t,a <e forte 1,...,T,

a,i

and the final objective function is expressed as

min Z J%.t,a-

Jita

Observe that the resulting formulation now rep-
resents a linear integer program.

Results

While the resulting IP formulation may take con-
siderable time to generate an optimal solution
and does not allow the incorporation aircraft drift
as a source of uncertainty, empirical results ob-
tained with the model exhibited insightful pat-
terns, which could have a significant impact on
policies for setting planned rates during GDPs.
To illustrate this, we first note that traffic flow
specialists use hourly acceptance rates that are
more or less constant during the course of a GDP
(see Figure 4 for typical patterns). This is driven
largely by the anticipation of a fixed runway con-
figuration, which carries with it a well-established
arrival capacity. Traffic flow specialists recoginze
the danger of under-utilization due to gaps in the
arrival stream. Sometimes, their mechanism for
coping with this stochastic element is to plan a
higher rate in the first one or two periods of the
GDP, this creating an airborne queue, known as
a managed arrival reservoir (MAR).

In contrast to the deterministic policy of uni-
form arrival rate, the optimal solution to our in-
teger programming model consistently showed a
staircase pattern of rising and falling arrival rates.
Sample results are shown in Figure 5. These re-
sults not only validate the wisdom behind a MAR,
they take it one step further. Rather than start-
ing the GDP with one big MAR, it may be best
to generate a series of smaller MARs. Intuitively,
this says that if airport utilization is of paramount
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Figure 4: Typical PAARs used by ATCSCC.

interest, then the best way to guard against de-
mand uncertainty is to maintain a steady arrival
queue by sending periodic bursts of aircraft to the
GDP airport.

Discussion: Effect of CDM

Procedures

The results discussed in the previous sections
show that uncertainty in the arrival stream may
have a significant impact on GDP performance.
In particular, our results highlight the influence
of arrival time drift, which reinforces current ef-
forts by the FAA to impose stricter controls on
controlled departure times. Moreover, the results
we obtained using the integer programming model
indicate that airborne holding may be reduced by
more creative policies for setting planned accep-
tance rates.

In light of these results, a logical question -

Paar
35

33
32
31
30
29
28
27
26
25

12345678
Period

12345678
Period

Figure 5: Sample Paars from IP model

which we are currently investigating - is how the
procedures instituted under CDM have affected
demand uncertainty, and consequently overall
GDP performance. So far, the benefits of CDM
have been measured primarily in terms of the re-
duction in assigned ground delay (e.g., by com-
pressing flights into vacated arrival slots); how-
ever, analysis of historical data shows that CDM
appears to have had an equally important effect
on the predictability of the arrival sequence. Fig-
ures 6 and 7 show two such effects. Figure 6 de-
picts the distribution of cancellation notice times
before and after the introduction of CDM (rela-
tive to the original estimated time of departure of
the flights). After the introduction of CDM, flight
cancellations were on average known an hour and
a half earlier than before CDM was introduced.
Figure 7 shows the average drift during the course
of a single CDM-based GDP. The graph depicted
in Figure 7 represents the average absolute differ-
ence between a flight’s current estimated arrival
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Figure 7: Drift evolution during GDPs

time of the flights and the time associated with
the slot it has been assigned to (in minutes), at
the given point in time. The averages are taken
over the flights that were not cancelled and had
not yet taken off, and the horizontal axis repre-
sents the time from the start of the GDP. The ver-
tical lines represent times at which the compres-
sion algorithm was executed Observe that each
time compression was executed, drift was reduced
significantly. As such, the improved information
exchange and ability to dynamically readjust the
arrival sequence of CDM appears to have had a
significant effect on demand uncertainty.

One question is how these changes have im-
pacted overall GDP performance. To properly
assess the benefits, one must acknowledge that
the introduction of CDM may have altered the
FAA’s decision process (e.g. the planned arrival
rates that were used before and after the start
of CDM). At one extreme, planned arrival rates
may not have changed, and compression of arrival
slots may have increased airport utilization. If
so, then the primary benefit of CDM has been

a reduction in FAA-assigned ground delay. At
another extreme, airport utilization may have re-
mained constant, while planned arrival rates have
been reduced. In this case, the primary benefit of
CDM has been a conversion of airborne delay into
ground delay. Our current research efforts focus
on determining which of these cases might have
occurred, by using historical data to determine
the changes in planned arrival rates and utiliza-
tion since the start of CDM.
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